Information Recovery in Shuffled Graphs via Graph Matching
نویسندگان
چکیده
منابع مشابه
Information Recovery in Shuffled Graphs via Graph Matching
In a number of methodologies for joint inference across graphs, it is assumed that an explicit vertex correspondence is a priori known across the vertex sets of the graphs. While this assumption is often reasonable, in practice these correspondences may be unobserved and/or errorfully observed, and graph matching—aligning a pair of graphs to minimize their edge disagreements—is used to align th...
متن کاملSignal Recovery from Partial Information via Orthogonal Matching Pursuit
This article demonstrates theoretically and empirically that a greedy algorithm called Orthogonal Matching Pursuit (OMP) can reliably recover a signal with m nonzero entries in dimension d given O(m ln d) random linear measurements of that signal. This is a massive improvement over previous results for OMP, which require O(m) measurements. The new results for OMP are comparable with recent resu...
متن کاملGraph matching for object recognition and recovery
A robust skeleton-based graph matching method for object recognition and recovery applications is presented. The object model uses both a skeleton model and contour segment models, for object recognition and recovery. Initially, the skeleton representation is created from the input contour that is provided by a deformable contour method (DCM). The skeleton is then matched against a set of objec...
متن کاملShuffled Graph Classification: Theory and Connectome Applications
We develop a formalism to address statistical pattern recognition of graph valued data. Of particular interest is the case of all graphs having the same number of uniquely labeled vertices. When the vertex labels are latent, such graphs are called shuffled graphs. Our formalism provides insight to trivially answer a number of open statistical questions including: (i) under what conditions does ...
متن کاملRobust Textual Inference via Graph Matching
We present a system for deciding whether a given sentence can be inferred from text. Each sentence is represented as a directed graph (extracted from a dependency parser) in which the nodes represent words or phrases, and the links represent syntactic and semantic relationships. We develop a learned graph matching model to approximate entailment by the amount of the sentence’s semantic content ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Information Theory
سال: 2018
ISSN: 0018-9448,1557-9654
DOI: 10.1109/tit.2018.2808999